Source code for tests.test_visualize

from mdai import visualize
import numpy as np

# TODO: test load_dicom_image (with RGB option or not)


[docs]def test_visualize(p): labels_dict = { "L_egJRyg": 1, # bounding box "L_MgevP2": 2, # polygon "L_D21YL2": 3, # freeform "L_lg7klg": 4, # line "L_eg69RZ": 5, # location "L_GQoaJg": 6, # global_image "L_JQVWjZ": 7, # global_series "L_3QEOpg": 8, # global_exam } p.set_labels_dict(labels_dict) ct_dataset = p.get_dataset_by_id("D_qGQdpN") ct_dataset.prepare() # image with multiple annotations image_id = ct_dataset.get_image_ids()[7] grey_image = visualize.load_dicom_image(image_id) rgb_image = visualize.load_dicom_image(image_id, to_RGB=True) scaled_image_1 = visualize.load_dicom_image(image_id, rescale=True) assert np.amax(grey_image) == 701 assert np.amax(scaled_image_1) == 255 assert grey_image.shape == (256, 256) assert rgb_image.shape == (256, 256, 3) scaled_image_2, gt_class_id, gt_bbox, gt_mask = visualize.get_image_ground_truth( image_id, ct_dataset ) assert len(gt_class_id) == len(gt_class_id) assert gt_mask.shape == (256, 256, 5)