Source code for tests.test_visualize
from mdai import visualize
import numpy as np
# TODO: test load_dicom_image (with RGB option or not)
[docs]def test_visualize(p):
labels_dict = {
"L_egJRyg": 1, # bounding box
"L_MgevP2": 2, # polygon
"L_D21YL2": 3, # freeform
"L_lg7klg": 4, # line
"L_eg69RZ": 5, # location
"L_GQoaJg": 6, # global_image
"L_JQVWjZ": 7, # global_series
"L_3QEOpg": 8, # global_exam
}
p.set_labels_dict(labels_dict)
ct_dataset = p.get_dataset_by_id("D_qGQdpN")
ct_dataset.prepare()
# image with multiple annotations
image_id = ct_dataset.get_image_ids()[7]
grey_image = visualize.load_dicom_image(image_id)
rgb_image = visualize.load_dicom_image(image_id, to_RGB=True)
scaled_image_1 = visualize.load_dicom_image(image_id, rescale=True)
assert np.amax(grey_image) == 701
assert np.amax(scaled_image_1) == 255
assert grey_image.shape == (256, 256)
assert rgb_image.shape == (256, 256, 3)
scaled_image_2, gt_class_id, gt_bbox, gt_mask = visualize.get_image_ground_truth(
image_id, ct_dataset
)
assert len(gt_class_id) == len(gt_class_id)
assert gt_mask.shape == (256, 256, 5)